## Mathematics Standards Of PISA Countries



William H. Schmidt

## Standards Reviewed

- Australia (New South Wales, Victoria)
- Canada
  - ≻Alberta
  - ➢Ontario
- China
  - ≻Shanghai
- Finland
- Korea
- US

## Most Common Trends

- 1. Equality of Opportunity---Mathematics for All
- 2. Integration of Mathematical Processes with Content Coverage
- 3. Incorporation of Local Issues in Curricular Materials
- 4. Utilization of Multiple Mathematical Contexts
- 5. Use of Digitally Based Resources

## 1 - Equality of Opportunity

- Strive for equality for ALL students
  - Equality in content coverage across regions of the country
  - Accommodation of different learning styles
  - Accommodation of diverse abilities and backgrounds
  - Content coverage that defines Mathematics for All
  - Curricula that addresses different student needs

## 2 - Integration of Mathematical Processes with Content Coverage

- Problem Solving
- Communication Around Mathematical Ideas
- Mathematical Reasoning
- Mathematical Modeling

## 2a - Problem Solving

- Read and understand
  - ➤What is known?
  - Draw a picture; make a list, table, graph, or chart
- Plan approach
  - ➤Look for a pattern
  - Choose from algorithms previously used
  - ➢OR develop a strategy
- Solve
- Verify reasoning; verify calculations

## 2b - Communication Around Mathematical Ideas

- Build mathematics vocabulary
- Students describe approaches to problem solving
- Students demonstrate ability to communicate mathematical ideas orally, visually, and in writing
- Students use precise mathematical language

## 2c - Mathematical Reasoning

- Build abilities to reason, think logically, complete proofs, and justify conclusions
- Promote creative thinking, allowing students to explore and discover mathematical concepts
- Ensure students can answer mathematical questions: Why? How? What if? How do you know that?

### 2d - Mathematical Modeling



OECD (2013), PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy, Figure 1.1, p. 26

#### School Education System in China

| 18-                            | University, college, high vocational schools, employment |                    |  |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Gaokao                         |                                                          |                    |  |  |  |  |  |  |
| 15-17                          | Senior high school, secondary vocational school          |                    |  |  |  |  |  |  |
| Zhongkao                       |                                                          |                    |  |  |  |  |  |  |
| 6-15                           | 13-15 (12-15)                                            | Junior high school |  |  |  |  |  |  |
|                                | 6-12 (6-11)                                              | Elementary school  |  |  |  |  |  |  |
| Nine-year compulsory education |                                                          |                    |  |  |  |  |  |  |

WU Yingkang (ICME12, RL, Korea) 2013/4/29

Center for the Study of Curriculum

#### Percentages of Items at Different Levels of Cognitive Demand Across Regions



Region

#### Percentages of Items at Different Levels of Computation Across Regions



Region

#### Percentages of Items at Different Levels of Reasoning Across Regions



Region

## Mathematical Processes--US

- 1. Make sense of problems and persevere in solving them
- 2. Reason abstractly and quantitatively
- 3. Construct viable arguments and critique the reasoning of others
- 4. Model with mathematics
- 5. Use appropriate tools strategically
- 6. Attend to precision
- 7. Look for and make use of structure
- 8. Look for and express regularity in repeated reasoning

# Make Sense of Problems and Persevere in Solving Them

- Understand the meaning of the problem and look for entry points to its solution
- Analyze information (givens, constrains, relationships, goals)
- Make conjectures and plan a solution pathway
- Monitor and evaluate the progress and change course as necessary
- Check answers to problems and ask, "Does this make sense?"
- Try special cases or simpler forms to gain insight

#### Reason Abstractly and Quantitatively

- Make sense of quantities and relationships in problem situations
- Represent abstract situations symbolically and understand the meaning of quantities
- Create a coherent representation of the problem at hand
- Consider the units involved
- Flexibly use properties of operations

# Construct Viable Arguments and Critique the Reasoning of Others

- Use definitions and previously established causes/effects (results) in constructing arguments
- Make conjectures and use counterexamples to build a logical progression of statements to explore and support their ideas
- Communicate and defend mathematical reasoning using objects, drawings, diagrams, actions
- Listen to or read the arguments of others
- Decide if the arguments of others make sense and ask probing questions to clarify or improve the arguments
- Compare the effectiveness of two plausible arguments

#### Model with Mathematics

- Apply prior knowledge to solve real world problems
- Identify important quantities and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas
- Make assumptions and approximations to make a problem simpler
- Check to see if an answer makes sense within the context of a situation and change a model when necessary
- Use symbols to represent real world problems

#### Use Appropriate Tools Strategically

- Make sound decisions about the use of specific tools Examples might include:
  - Calculator
  - Concrete models
  - Digital Technology
  - Pencil/paper
  - Ruler, compass, protractor
- Use technological tools to visualize the results of assumptions, explore consequences and compare predications with data
- Know the limits of each tool for providing accurate solutions for the problem
- Detect tool-generated errors by estimating reasonable solutions without the tool

#### Attend to Precision

- Communicate precisely using clear definitions
- State the meaning of symbols, carefully specifying units of measure, and providing accurate labels
- Calculate accurately and efficiently, expressing numerical answers with a degree of precision appropriate to the problem context
- Provide carefully formulated explanations
- Label accurately when measuring and graphing
- Express numerical answers with a degree of precision appropriate to the problem context

#### Look For and Make Use of Structure

- Look for both numerical and visual patterns or structure, recognizing that quantities can be represented in different ways
- Recognize the significance in concepts and models and use the patterns or structure for solving related problems
- View complicated quantities both as single objects or compositions of several objects and use operations to make sense of problems
- Students' attention is consistently drawn to the structure of the mathematics as it occurs

#### Look For and Express Regularity in Repeated Reasoning

- Notice repeated calculations and look for general methods and shortcuts
- Continually evaluate the reasonableness of intermediate results (comparing estimates) while attending to details and make generalizations based on findings

## 3 - Incorporation of Local Issues in Curricular Materials

- Encourage positive attitudes about mathematics -- link mathematics to real world situations
- Incorporate local flavor to curricular planning; seek input from teachers, administrators, parents and business leaders

## 4 - Utilization of Multiple Mathematical Contexts

- Promote connections between mathematical concepts
- Promote connections between math and other disciplines
- Promote meaningful connections between math and the real world
- Develop a strong sense of citizenship through the use of mathematics

#### Percentages of Items at Different Levels of Context Across Regions



Region

## 5 - Digitally Based Resources

- Keep up with technological advances in classroom instruction
  - >Use electronic tools readily
  - Educational broadcasts (radio, television cable)
  - Supplement text material with available digital resources
    - Computer software
    - Web-based instruction / lessons

## Curricular Trends: What Countries?

| French and in Curriculure                  | Australia | Alberta, | Ontario, | <b>F</b> inland | Kanas | Shanghai |
|--------------------------------------------|-----------|----------|----------|-----------------|-------|----------|
| Emphasized in Curriculum                   | Australia | СА       | СА       | Finland         | Korea |          |
| Equality                                   |           |          |          | •               |       |          |
| Integrate mathematical processes           |           |          |          |                 |       |          |
| <ul> <li>Problem solving</li> </ul>        |           |          |          | •               |       |          |
| <ul> <li>Communication</li> </ul>          |           |          |          | •               |       |          |
| <ul> <li>Mathematical Reasoning</li> </ul> |           |          |          |                 |       |          |
| Local Issues                               |           |          |          | •               | •     |          |
| Encourage Connections                      |           |          |          | •               | •     |          |
| Utilize digitally based resources          |           |          |          |                 |       |          |

## Coverage of Key Content: K-8

| Strand/Topic - Grade First Intended    | Australia<br>(NSW) | Alberta,<br>CA | Ontario,<br>CA | Finland | Korea | Shanghai |
|----------------------------------------|--------------------|----------------|----------------|---------|-------|----------|
| Adding Fractions, unlike denom         | 7                  | 7              | 7              | 3-5     | 5     | 4        |
| Unit Rates & Proportionality           | 7                  | 8              | 7/8            | 6-8     | 5     | 6-7      |
| Identifying Numeric Patterns           | K/1                | 2              | 1              | 3-5     | 2     | 1-2      |
| Solving Linear Equations               | 7                  | 7              | 7              | 6-8     | 7     | 6-7      |
| Quadratic Equations                    | 9                  | 9              | >8             | 6-9     | 9     | 6-7      |
| Coordinate System                      | 7                  | 6              | 5              | 3-5     | 7     | 7        |
| Concept of Volume                      | K/1                | 5              | 4              | 6-8     | 5     | 5        |
| Finding Volume                         | 7                  | 6              | 5/7            | 6-8     | 5/6   | 5        |
| Pythagorean Theorem                    | 7                  | 8              | 8              | 6-8     | 9     | 8        |
| Symmetry                               | 1/2                | 4              | 2              | 3-5     | 5     | 7        |
| Congruence                             | 7                  | 4              | 3              | 3-5     | 5     | 7        |
| Similarity                             | 7                  | 9              | 7              | 3-5     | 8     | 8-9      |
| Measures of Central Tendency and Range | 7                  | 7              | 5              | 3-5     | 5     | 6        |
| Probability                            | 5 - 7              | 6/7            | 5              | 6-8     | 8     | 5        |

## Alberta High School Tracks



Adapted from Alberta Education Mathematics (10-12) pg. 10

Center for the Study of Curriculum

## Coverage of Key Content: High School

|                                                                     | Alberta, Canada          |                        | Finland    |         | Korea      | Shanghai |   |
|---------------------------------------------------------------------|--------------------------|------------------------|------------|---------|------------|----------|---|
| Торіс                                                               | College with<br>Calculus | College NO<br>Calculus | No College | College | No College |          |   |
| Graph and analyze exponential and logarithmic functions             | •                        | •                      |            | •       | •          | ٠        | • |
| Solve systems of equations                                          | •                        |                        |            | •       | •          | •        | • |
| Apply translations & stretches to functions<br>(graphs & equations) | •                        |                        |            |         |            | ٠        |   |
| Find the distance between two points<br>(Pythagorean Theorem)       |                          |                        | •          | •       | •          | •        | • |
| Understand inverses of relations                                    | •                        |                        |            | •       |            | •        | • |
| Graph and analyze quadratic functions                               | •                        | •                      |            | •       | •          | •        | • |
| Graph and analyze trigonometric functions                           | •                        |                        |            | •       |            | •        | • |
| Perform operations with composite functions                         | •                        |                        |            | •       |            | •        | • |
| Understand transformations on a 2D shape or 3D                      |                          |                        | •          |         |            | •        |   |
| Perform operations with vectors; vector calculus                    |                          |                        |            | •       |            | •        | • |
| Find limit of sequences and series                                  |                          |                        |            |         |            | ۲        | • |
| Find limit of a trigonometric function                              |                          |                        |            |         |            | •        |   |
| Find derivative of a polynomial function                            |                          |                        |            | •       | •          | •        |   |
| Integrate a polynomial function                                     |                          |                        |            | ●       |            | •        |   |
| Apply set theory to solve problems                                  |                          | •                      |            |         |            |          |   |
| Calculate permutations and combinations                             | •                        | •                      |            | •       | •          | •        | • |

## Notable Differences in Grade Level Coverage K-8

- Coordinate System 3-7
- Concept of Volume K-6
- Symmetry 1-7
- Congruence 3-7
- Similarity 5-9

## Potential Secondary Topics For All

- Pythagorean Theorem
- Exponential/Logarithmic Functions
- Quadratic Functions
- Permutations and Combinations
- No Others out of the 16