A FEW REMARKS ON THE POLICY RELEVANCE FROM AN OECD PERSPECTIVE

Dirk Van Damme
Head of the Innovation and Measuring Progress division – OECD/EDU
Skills shortages and mismatches have a significant impact

- Lack of STEM graduates has a very negative economic impact
- STEM shortages become important when economic growth accelerates, so can hamper post-crisis recovery
- Production of STEM graduates is also important for feeding the country’s research and innovation system
- In turn, less excellent math and science graduates also imply less qualified teachers
Evolution of STEM graduate shortages in Germany
Science top performers in PISA and countries’ research intensity
Education is seen as critically important to solve STEM shortages

• Concerns with STEM education especially at secondary level education
 – Students’ choices

• Some worrisome PISA data
 – Decline in math learning outcomes 2003-2009 in some countries
 – Decrease in top-performers
 – Negative correlation between cognitive score and interest in science and career preferences
The share of schoolchildren in German general education that choose STEM subjects
Evolution of the choice of specialisation courses in Norwegian secondary education
Pupils’ choices for STEM subjects in England made at the age of 16 (“GCE A level entries”)
Change in the percentage of top performers in mathematics between 2003 and 2009
Science scores and interest in science correlate negatively
Percentage of 15y-old boys planning a career in engineering or computing (2006)

PISA math score 2009

R² = 0.1965
Some questions

• What’s wrong with STEM education, in particular mathematics education?
 – ‘How’ question of teaching math
 – ‘What’ question of teaching math: relevance of the curriculum

• Relevance
 – to future labour market & innovation needs
 – to learning, ‘joy of learning’, motivation and cognitive & non-cognitive skills development
 – to 21st Century skills